2008年9月26日

324 - Factorial Frequencies


 

UVa網站題目連結
My Solved Problems Performance

In an attempt to bolster her sagging palm-reading business, Madam Phoenix has decided to offer several numerological treats to her customers. She has been able to convince them that the frequency of occurrence of the digits in the decimal representation of factorials bear witness to their futures. Unlike palm-reading, however, she can't just conjure up these frequencies, so she has employed you to determine these values.

Recall that the definition of n! (that is, n factorial) is just tex2html_wrap_inline28 . As she expects to use either the day of the week, the day of the month, or the day of the year as the value of n, you must be able to determine the number of occurrences of each decimal digit in numbers as large as 366 factorial (366!), which has 781 digits.

Input and Output

The input data for the program is simply a list of integers for which the digit counts are desired. All of these input values will be less than or equal to 366 and greater than 0, except for the last integer, which will be zero. Don't bother to process this zero value; just stop your program at that point. The output format isn't too critical, but you should make your program produce results that look similar to those shown below.

Madam Phoenix will be forever (or longer) in your debt; she might even give you a trip if you do your job well!

Sample Input

3
8
100
0

Sample Output

3! --
(0) 0 (1) 0 (2) 0 (3) 0 (4) 0
(5) 0 (6) 1 (7) 0 (8) 0 (9) 0
8! --
(0) 2 (1) 0 (2) 1 (3) 1 (4) 1
(5) 0 (6) 0 (7) 0 (8) 0 (9) 0
100! --
(0) 30 (1) 15 (2) 19 (3) 10 (4) 10
(5) 14 (6) 19 (7) 7 (8) 14 (9) 20

Solution

  1. import java.io.BufferedInputStream;
  2. import java.math.BigInteger;
  3. import java.util.Scanner;
  4.  
  5. public class Main {
  6.  
  7. static Scanner in = new Scanner(new BufferedInputStream(System.in));
  8. static int input, temp;
  9. static int[] intArray = new int[10];
  10. static BigInteger bigInt = new BigInteger("1");
  11. static BigInteger[] bigIntArray = new BigInteger[367];
  12.  
  13. public static void main(String[] args) {
  14. bigIntArray[0] = new BigInteger("0");
  15. bigIntArray[1] = new BigInteger("1");
  16. for (int i=2; i<367; i++) {
  17. bigIntArray[i] = bigIntArray[i-1].multiply(new BigInteger(
  18. String.valueOf(i)));
  19. }
  20.  
  21. while ((input=in.nextInt())!=0) {
  22. process(input);
  23. }
  24. }
  25.  
  26. private static void process(int input) {
  27. for (int i=0; i<intArray.length; i++) {
  28. intArray[i]=0;
  29. }
  30. bigInt = bigIntArray[input];
  31. while (bigInt.compareTo(BigInteger.ZERO)>0) {
  32. temp = bigInt.divideAndRemainder(BigInteger.TEN)[1].intValue();
  33. bigInt = bigInt.divide(BigInteger.TEN);
  34. intArray[temp]++;
  35. }
  36. System.out.println(input+"! --");
  37. System.out.println(" (0) "+intArray[0]+" (1) "+intArray[1]+
  38. " (2) "+intArray[2]+" (3) "+intArray[3]+
  39. " (4) "+intArray[4]);
  40. System.out.println(" (5) "+intArray[5]+" (6) "+intArray[6]+
  41. " (7) "+intArray[7]+" (8) "+intArray[8]+
  42. " (9) "+intArray[9]);
  43. }
  44. }
關鍵字:UVa Online Judge, ACM. Java


更多精選推薦文章

0 意見 :